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Investigation of flows in solidification by using the lattice Boltzmann method
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Abstract

The lattice Boltzmann method (LBM) is adopted to solve melting and solidification problems. D2Q9 lattice is used to solve 2D fluid flow
and heat transfer problem by using two distribution functions approach. The phase interface is traced by using partial or probabilistic bounce
back approach suggested by Thorne and Sukop [D.T. Thorne, M. Sukop, Lattice Boltzmann method for the Elder problem, in: C.T. Miller,
M.W. Farthing, W.G. Gray, G.F. Pinder (Eds.), Proceedings of Int. Conf. Computational Methods in Water Resources (CMWR XV), June 13–17,
2004, Chapel Hill, NC, USA, Elsevier, Amsterdam] for simulation of flow in porous medium. The considered scheme is first validated for natural
convection without and with phase change coupling and results were well compared with benchmark and with published experimental results.
Also, the predicted solutions for phase change problems were compared with the predictions of conventional method. The results are interesting
and demonstrate that approach can produce dependable results.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Phase change is of significant importance in the material
processing and crystal growth processes. Physical understand-
ing for flow and heat transfer is essential for permitting growth
of high quality pure crystals [1,2]. Investigation of stability
for melt flows under crystal growth conditions permits one to
qualify the critical operating parameters of crystal growth. In
general, liquid metals have a low Prandtl number, hence any
perturbation may get amplified and flow becomes unstable. Sta-
ble dynamic solutions are important for practical applications
because of their impact on the constitutional control (dopant
distribution) [3]. In the present work, two classes of melting
problems in differentially heated cavity will be solved using
LB methods, namely horizontal applied temperature gradient
for validation of the scheme and a vertical gradient (Rayleigh–
Bénard problem) with phase change material.
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The physics of the flow in a cavity heated from below and
cooled from above can be explained as: the flow is weak and
is mainly due to the two-dimensional temperature field which
results in a cold (more dense) stream of fluid descending to-
wards the centre of the lower solid interface. Thus, the two
contra-rotating cells accumulate solute near the interface. The
iso-concentration lines show such behaviour in the immediate
vicinity of the interface. The species accumulation can lead to
morphological instabilities [3,4].

Classical CFD methods have been used by many researchers
[3–6] for solving solidification problems controlled by heat and
mass transfer in 2D configuration. Recent developments men-
tion an interest of 3D simulations for cavities heated from bel-
low and especially involved on directional solidification [7].
The increasing interest in that field refers to the interaction be-
tween solid and liquid phases in terms of morphological result-
ing structures (kinetics of growth, composition and shape of the
interface). The numerical tool developed to integrate such cou-
pling have to ensure robustness to describe fluid flow (occurring
instability, multiple solutions, . . .) and flexibility for complex
treatments (interface, segregation, micro-convection).
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History of using LBM method for simulating the phase
change materials goes back to Miller and Miller et al. works
in 2001 [8,9], they introduced kinetic reaction equation as a
model for phase change. The model successfully simulated 2-D
melting of gallium (Ga) and the anisotropic growth of crys-
tals into an under-cooled melt. Miller et al. [10] extended the
model to incorporate crystallization and surface tension effect.
The method was applied to simulate binary alloys solidification.
They also testified that dendritic growth into an undercooled
melt showed a good agreement with the analytical results.

Raj et al. [11] solved one dimensional solidification of a
semi-transparent material. Discrete ordinate method is used to
model radiative heat transfer and heat diffusion through the
material is solved by adapting LBM. Enthalpy change and ra-
diative terms are incorporated in the LBM as a source term.

Chatterjee and Chakraborty [12] discussed the drawbacks of
current LBM approaches for simulating phase change prob-
lems. They argued that the mentioned methods need fine
meshes for resolving small length scale structures. They sug-
gested an alternate scheme based on total enthalpy method,
which does not need fine meshes to resolve a minimum length
scale. Miller et al. [13] simulated phase change process for
a binary alloy. They introduced two scalar fields, one for
solid/liquid fraction and another for binary fraction coupled
with LBM. The results showed good agreement with published
results, also fine structures of dendrite evolution were consid-
ered.

Recently, Medvedev and Kassner [14], used LBM combined
with phase field to simulate dendritic growth from a subcooled
melt.

In this paper another approach is suggested and applied for
solidification/melting problems and devoted to the investigation
of the melt/interface interaction. The method is based on sim-
ulation of solid/liquid transition zone as a porous media using
the LB scheme. The method present advantages of easy im-
plementation and results are in good agreement with classical
finite volume method and published experimental data. Hence,
the main contribution of the paper comes applying a method
suggested by Thorne and Sokup [15] for simulation of flow in
porous media to phase change problem. For our knowledge this
is the first work uses probabilistic bounce back approach to sim-
ulated moving boundaries.

In the following paragraphs, the method of solution and
adaptations of boundary conditions will be explained, followed
by discussion of the predicted results and concluding remarks.

2. The lattice Boltzmann procedure

Lattice Boltzmann (LB) methods are a class of mesoscopic
particle based approaches to simulate fluid flows. They are be-
coming a serious alternative to traditional methods for com-
putational fluid dynamics [16,17]. LB methods are especially
well suited to simulate flows in complex geometries, and they
are straightforwardly implemented on parallel machines [18].
Historically, the lattice Boltzmann approaches are developed
from lattice gases theory, although it can also be derived di-
rectly from the simplified Boltzmann BGK equation [19]. In
lattice gases, particles live on the nodes of a discrete lattice.
The particles jump from one lattice node to the next, accord-
ing to their (discrete) velocity. This is called the propagation
phase. Then, the particles collide and get a new velocity. This
is the collision phase. Hence the simulation proceeds in an al-
ternation between particle propagations and collisions. The two
phases can be clearly distinguished.

It can be shown that lattice gases solve the Navier–Stokes
equations of fluid flow [18]. The major disadvantage of lattice
gases for common fluid dynamics applications is the occurrence
of noise. It considers particle distributions that live on the lattice
nodes, rather than the individual particles.

By constitution, velocity and thermal field have to receive
a different treatment when considering the lattice approach,
which will be explained in the following paragraphs.

2.1. LB equation for the velocity field

The lattice Boltzmann method employed in this study uses a
square lattice (Frisch–Hasslacher–Pomeau model) (Fig. 1) [17],
the main equation need to be solved is:

fi(x + ci�t, t + �t) − fi(x, t) = Ωi (1)

where fi are the particle distribution defined for the finite set of
the discrete particle velocity vectors ci. The collision term Ωi

on the right-hand side of Eq. (1) uses the so called Bhatangar–
Gross–Krook (BGK) approximation [18]. The essence of this
approximation for LBE method is that the collision term Ωi will
be replaced by the well-known classical single time relaxation
approach:

Ωi = −fi − f
eq
i

τ
+ Fi (2)

where τ is the relaxation time and f
eq
i is the local equilibrium

distribution function that has an appropriately prescribed func-
tional dependence on the local hydrodynamic properties.

Fi represents the external force fields that give rise to a
body force. This force term is self-consistently generated by
the neighboring distribution functions around each lattice site
and does not violate either the local mass conservation or the

Fig. 1. Example of lattice Boltzmann grid (D2Q9).
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global momentum conservation. The total imposed body force
is given by:∑

i

eiFi = F = ρG (3)

where G is the buoyancy source term which can be described
as:

G = gβ(T − Tref) (4)

This relation (4) is consistent with the Boussinesq approxima-
tion. g represents the gravity acceleration, β is the volumetric
thermal expansion coefficient and Tref is the reference temper-
ature.

The present LB equation for dynamical system is completed
by choosing the equilibrium distribution [20]:

f
eq
i = ωiρ

[
1 + 3

ci.u
c2

+ 9

2

(ci.u)2

c4
− 3

2

u.u
c4

]
(5)

where u and ρ are the macroscopic velocity and density, respec-
tively, and ωi are the weights that are given by the length of the
velocity vector:

ω0 = 0 and ω2k = 1/36; ω2k+1 = 1/9 for k = 1,2, . . . (6)

The discrete velocities for D2Q9 are defined as follows:

c0 = (0,0)

c2k+1 = c

[
cos

(
k
π

2

)
, sin

(
k
π

2

)]
and

c2k = √
2c

[
cos

(
(2k − 1)

π

4

)
, sin

(
(2k − 1)

π

4

)]
(7)

for k = 1 to 4, where c = δx/δt , δx and δt are the lattice
constant and the lattice time step size, respectively. The basic
hydrodynamic quantities, such as density, ρ, and velocity u, are
obtained through moment summations in the velocity space:

ρ(x, t) =
∑

i

fi(x, t) (8)

ρu(x, t) =
∑

i

cifi(x, t) (9)

Eq. (1) is often solved in the following two steps:

f ∗
i (x + ci�t, t) = fi(x, t), 1 � i � 8

The Chapman–Enskog expansion for the density distribution
function can recover the continuity and Navier–Stokes equa-
tions. The detailed derivation of this procedure is given by Hou
et al. [21] and will not be shown here. The lattice viscosity is
given by

ν =
(

τv − 1

2

)
c2
s δt (10)

2.2. LB equation for scalar field

In general, LB methods for fluid flow involving heat (or
species) transfer in a plain medium can be classified into two
categories, the multi-speed models [22] and the double distri-
bution function approach [23,24]. In the doubled population,
the flow and the temperature fields are solved by two separate
equations.

The LBGK model for solving Navier stokes and energy
equations follows the idea of He and Chen [23], two equations
are used to solve the velocity and temperature fields, respec-
tively. In this context, the evolution equation for the internal
energy is given as follows:

gi(x + ci�t, t + �t) − gi(x, t)

= − 1

τT

(
gi(x, t) − g

eq
i (x, t)

)
(11)

where gi is the energy distribution function, τT is the dimen-
sionless relaxation time for the temperature field, and the equi-
librium temperature distribution function is given by:

g
eq
0 = −2

3
ρe

u.u
2c2

g
eq
2k+1 = ρe

9

(
3

2
+ 3

2

c2k+1.u
c2

+ 9

4

(c2k+1.u)2

c4
− 3

2

u.u
c2

)
(12)

g
eq
2k = ρe

36

(
3 + 6

c2k.u
c2

+ 9

2

(c2k.u)2

c4
− 3

2

u.u
c2

)

for k = 1 to 4

the macroscopic temperature is calculated from the internal en-
ergy as:

ρe =
∑

i

gi (13)

The temperature and internal energy are related through the
state equation e = RT . The Chapman–Enskog expansion for
the density distribution function recovers the macroscopic en-
ergy equation. This gives the thermal diffusivity α in term of
the single relaxation:

α = 1

3

(
τT − 1

2

)
c2δt (14)

2.3. Phase change treatment

To solve the phase change problem, a fixed grid approach is
used similar to the principle used for enthalpy formulation when
considering continuum media [25]. The melting processes takes
place over a temperature range (i.e. in the interval Tm ± ε),
where ε is a small quantity (typically 5% of �T ). The prin-
ciple of the enthalpy method is to separate the sensible and
latent heat components in the vicinity of the solid–liquid in-
terface (Tm − ε < T < Tm + ε). The latent heat component is
expressed in term of the latent heat and liquid fraction, Fl ,
which is defined as:

Fl = 1 for T > Tm + ε

Fl = 0 for T < Tm − ε (15)

Fl = (T − Tm + ε)/2ε for Tm − ε � T � Tm + ε

Dynamically, the phase change zone is treated like a porous
medium [15]. The flow penetration into the medium depends on
its permeability. The basic concept is introduced by assuming
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that the population densities are uniformly distributed through-
out the volume of each node. Each particle moves a total dis-
tance of 1 or

√
2 lattice spacing in one time step, depending on

its speed. If the node is totally solid, f ∗
j (x, t) is completely re-

flected fj (x, t) = fj (x, t + �t). If the node contains a fraction
of fluid Fl < 1, only a part of f ∗

j (x, t) is propagated, the other
part is reflected and returned to the initial cell.

Considering the traditional collision step as a second in-
termediate step after streaming, we note f ∗∗ the result of the
collision step given by:

f ∗∗
j (x, t + �t) = f ∗

j (x, t) + 1

τ

(
f

eq
j (x, t) − f ∗

j (x, t)
)
,

0 � j � 8

The streaming process in the porous media can be written
as:

fj (x, t + �t) = f ∗∗
j (x, t + �t) + λ

(
f ∗∗

j̄
(x + cj�t, t + �t)

− f ∗∗
j (x, t + �t)

)
, 0 � j � 8

where j̄ is the index of the opposite direction to cj and λ = 1 −
Fl a factor to take into account the permeability of the medium
depending on the liquid fraction on each node.

If λ = 1, there is no effect on streaming processes. If λ = 0,
the streaming processes is reduced with respect to the usual LB
method for free-fluid.

2.4. Boundary conditions

In practical applications, boundary conditions are usually
given in terms of macroscopic physical variables such as ρ

and u. In the LB approach, however, these conditions should
be implemented through the distribution function fj . Bound-
ary condition that can preserve the total mass in a given system
is very important for LB simulations. Mass conserving solid
wall boundary condition is defined here. The basic idea is to
use linear interpolation between fj (xf , t) and f ∗

j (xb, t) to find
f ∗

j ′(xb, t) [26]. However, we will adapt the density term in the
expression of f ∗

j (xb, t) to guarantee the mass conservation,
since the f ∗

j (xb, t) term is responsible for the mass leakage.
Therefore, we define that:

f ∗
j (xb, t) = ωjρ(xw, t)

[
1 + 3

c2
ej .uf + 9

2c2
(ej .uf )2

− 3

2c2
(uf .uf )2

]
(16)

where ρ(xw, t) is called the wall density.
The expression of ρ(xw, t) must be determined to guarantees

the mass conservation. Fig. 2 shows the known and unknown
Particle Distribution Functions (PDF) of a boundary site at the
lower wall boundary after the streaming step.

The outgoing PDFs are f4, f7, f8 which are known and the
incoming PDFs are f2, f5, f6 which are unknown. The mass
conservation requires that f2 + f5 + f6 = f4 + f7 + f8. As-
suming that all the outgoing PDFs satisfy also Eq. (14), with an
unknown ρ(xw, t) term. Summing these together gives:

f4 + f7 + f8 = 1
ρ(xw, t) (17)
6

Fig. 2. Particle Distribution Functions (PDF) of a wall boundary site at south
wall boundary after the streaming step.

Therefore ρ(xw, t) will be:

ρ(xw, t) = 6(f4 + f7 + f8) (18)

Then by substituting the expression of ρ(xw, t) into Eq. (14),
the unknown PDFs f2, f5, f6 can be obtained. It is straightfor-
ward to show that this boundary treatment indeed satisfies the
conservation condition:∑
outgoing

f =
∑

incoming

f (19)

The same approach is applied to thermal boundary condi-
tions. For the Dirichlet type condition, the given temperature is
applied on the boundary wall.

For the Neumann type condition (adiabatic wall), the normal
heat flux is zero at the boundary node, the unknown distribution
functions are also assumed to be Eq. (14), the normal flux is
given by:

∂T

∂y

∣∣∣∣
w

=
8∑

j=0

gj cj.n (20)

Substituting Eq. (14) and the known PDFs gj into Eq. (18),
the unknown density ρ(xw, t) is specified as follows:

ρ(xw, t) = 6(g6 + g2 + g5) (21)

3. Results and discussion

3.1. Code validation

Validation has been made regarding commonly used test
case of natural convection in a square cavity without phase
change material [27]. Prandtl number is fixed to Pr = 0.71 and
Rayleigh numbers is varied between 103 to 106. LB solution
is carried out by using the particle velocity model referred as
D2Q9 grid.

LB solution produces the expected behaviours for low and
high Rayleigh numbers. Table 1 summarizes representative
quantities of the flow field and heat transfer. Good agreement
is found between LB results and classical based Navier–Stokes
simulations [27].

The heat transfer at the hot surface increases with Ra. At
Ra > 105, the flow is characterised by distinct boundary layers
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Fig. 3. Isotherms and streamlines for Ra = 106.
Table 1
Numerical values with uniform mesh 150 × 150 for Ra from 103 to 105 and
250 × 250 for Ra = 106. Reference values [27] are underlined

Ra umax vmax Nu

103 3.699 3.697 3.650 3.649 1.116 1.118
104 19.620 19.617 16.178 16.178 2.245 2.243
105 68.68 68.59 34.73 34.73 4.521 4.519
106 220.418 219.36 64.763 64.63 8.814 8.800

adjacent to the differently heated walls. An illustration of the
temperature and flow patterns LB resulting is given on Fig. 3
for Ra = 106.

For phase change material, Gau and Viskanta [28] published
experimental data on solidification of Ga for a cavity with as-
pect ratio of 2. Fig. 4 shows the unsteady state liquid–solid
interface obtained by the current LB method, finite volume [29]
and experimental data. The agreement is fairly good and the
ability of LB method to captivate incurved interface is obvious.
Then the following extension is going to provide the transient
convection and interface coupling simulated by using LB.

3.2. Convection coupled phase change

In this section we considered a cavity of aspect ratio, AR =
H/L = 0.75 filled with solid Gallium material at its solidifi-
cation temperature. All the walls are supposed to be adiabatic
except the bottom one for which the temperature is increased
abruptly at a hot value higher than the melting temperature.
We study the ability of LB approach to describe the kinetics
of phase change and the interaction of the natural convection
with the solidification front.

Two illustrative flow situations are chosen. Fig. 5 shows the
flow field and isotherms at lattice time t = 12 800 l.u. (equiv-
alent to 18 s) and t = 30 000 l.u. (equivalent to 28 s) for
Ra = 2 × 106. At the beginning the conductive evolution takes
place with a weak flow, followed by a convective Rayleigh–
Bénard regime. With time increase the lattice solution leads to
four convective cells in the melt zone at time 12 800 l.u. The
solid/liquid interface changes from a plane shape at the initial
Fig. 4. Comparison of the predicted solid/liquid interface using LBM, finite
volume method [29] and experimental data [28].

state to a symmetrical deformation. The curvature of the in-
terface is controlled by the intensity of the flow velocity. The
intensity of the cells increases with time and bifurcates to a
more complex multi-cell flow. The flow intensity can be shown
on Fig. 6, where the vertical velocity component exhibit two ex-
treme values on the horizontal plan at the different represented
level of the cavity.

Fig. 7 shows the variation of the rate of heat transfer on the
hot surface at various times. For t = 3600 l.u. (3.4 s), and be-
cause of the heat conductive dominance, the thermal transfer is
practically uniformly distributed on the hot wall. The develop-
ment of convection in the melt zone gives birth of convective
cells that influence locally the rate of heat transfer. This is well
illustrated in this Fig. 5, where the development of a large con-
vective cell improves the thermal transfer at the centre of the
hot surface.

This behaviour can be observed also in the evolution of
global Nusselt number where the controlling Ra number con-
trols the flow intensity and the resulting heat transfer.
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Fig. 5. Isotherms (right) and velocity vectors (left) with solid/liquid interface for Ra = 2 × 106 at t = 12 800 l.u. and t = 30 000 l.u.
In Fig. 8, we present the evolution of Nusselt number Nu
(versus lattice time) for different Rayleigh numbers. This fig-
ure illustrates the unique uniform decrease of the heat transfer
during the dominating conductive regime. The heat transfer de-
crease is a direct consequence of the liquid gap increase, as
Nu = (Thot−Tm)

Xinterface
. The liquid domain is contained between the

hot surface and the solid–liquid interface. The interface position
evolution with time corresponds to the classical Stefan problem
were the analytical solution is Xinterface ∼ √

t (see for instance
Carslaw and Jaeger [30]). The consequence of the Rayleigh
number increase is a decrease of the needed time to initiate the
convective regime.

When the thermal convection develops in the melt zone; the
evolution of Nu changes form conductive heat transfer given by
Nu ∼ 1/

√
t to a convective mode.

The same observation can be applied to the temporal evolu-
tion of the total liquid fraction, as shown in Fig. 9. The analyti-
cal diffusive solution refers to the linear plot (in the logarithmic
Fig. 6. Vertical velocity component at different levels for Ra = 2 × 106 at
t = 30 000 l.u.
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Fig. 7. Local Nusselt number on hot wall at different times for Ra = 2 × 106.

Fig. 8. Evolution of average Nusselt number on hot wall for different Rayleigh
number values.

Fig. 9. Evolution of total liquid fraction for different Rayleigh numbers.

scale). The agreement with the diffusive phase change solution
at early times illustrates the validity and the good resolution of
the timescale of the sudden imposition of the heating condition.
The melting process is controlled by thermal conduction, evo-
lution of the total liquid fraction with time is linear. However,
the development of convective flow increases the melting rate
of the solid gallium, which explains the change in the previous
linear liquid fraction evolution.

4. Conclusion

Simulations of interaction between convective flow and
solid/liquid interface in rectangular cavities have been carried
out using the lattice Boltzmann method. The adapted proba-
bilistic bounce back approached is used. It is found that this
new approach is valuable method for moving boundary prob-
lems. Computed results are well compared with reference the
bench-mark results for monophasic case and for gallium melt-
ing. In the case of a cavity heated by bottom, the development
of the natural convection in the molten zone significantly influ-
ences the melting rate as well as the progression and the shape
of the solid/liquid interface. Based on the LB possibilities, such
scheme can potentially extended to consider the interface mor-
phology, local micro-flows and local solidification structures
leading on developing global simulation codes coupling micro/
macro aspect in 3D configuration and straightforwardly imple-
mented on machines.
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